Aas 14-224 Long-term Orbital Propagation through Differential Algebra Transfer Maps and Averaging Semi-analytical Approaches
نویسندگان
چکیده
Orbit perturbations are fundamental when analyzing the long-term evolution and stability of natural or artificial satellites. We propose the computation of transfer maps for repetitive dynamical systems as a novel approach to study the long-term evolution of satellite and space debris motion. We provide two examples of this technique, the evolution of high area-to-mass ratio spacecraft under solar radiation pressure and J2, and a sun-synchronous groundtrack repeating orbit with drag and J2. The results presented demonstrate the potentiality of the transfer maps for these problems. We furthermore compare this approach with averaging methods for the propagation of the orbital dynamics on the long-term, and suggest possibilities to combine differential algebra based methods with orbital elements averaging.
منابع مشابه
A New Approach for Solving Heat and Mass Transfer Equations of Viscoelastic Nanofluids using Artificial Optimization Method
The behavior of many types of fluids can be simulated using differential equations. There are many approaches to solve differential equations, including analytical and numerical methods. However, solving an ill-posed high-order differential equation is still a major challenge. Generally, the governing differential equations of a viscoelastic nanofluid are ill-posed; hence, their solution is a c...
متن کاملDensity Evolution of High Area-to-mass Objects Using Semi-analytical and Differential Algebra Techniques
This paper introduces and combines two novel techniques. Firstly, we introduce an efficient numerical method for the propagation of entire sets of initial conditions in the phase space and their associated phase space densities based on Differential Algebra (DA) techniques. Secondly, this DA density propagator is applied to a DA-enabled implementation of Semi-Analytical (SA) averaged dynamics, ...
متن کاملAas 16-236 Probabilistic Initial Orbit Determination
Future space surveillance requires dealing with uncertainties directly in the initial orbit determination phase. We propose an approach based on Taylor differential algebra to both solve the initial orbit determination (IOD) problem and to map uncertainties from the observables space into the orbital elements space. This is achieved by approximating in Taylor series the general formula for pdf ...
متن کاملStochastic averaging for SDEs with Hopf Drift and polynomial diffusion coefficients
It is known that a stochastic differential equation (SDE) induces two probabilistic objects, namely a difusion process and a stochastic flow. While the diffusion process is determined by the innitesimal mean and variance given by the coefficients of the SDE, this is not the case for the stochastic flow induced by the SDE. In order to characterize the stochastic flow uniquely the innitesimal cov...
متن کاملOn the habitability of the OGLE-2006-BLG-109L planetary system
We investigate the dynamics of putative Earth-mass planets in the habitable zone (HZ) of the extrasolar planetary system OGLE-2006-BLG-109L, a close analog of the Solar System. Our work is inspired by the paper of Malhotra and Minton (2008). Using the linear Laplace– Lagrange (L–L) theory, they identified a strong secular resonance that may excite large eccentricity of orbits in the HZ. However...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014